
罗茨风机轴温不能超过多少_罗茨风机
罗茨风机轴温不能超过多少:技术要求-风机.doc
风机类、风阀类设备
1)投标人提供的风机类、风阀类设备必须是在国内城市轨道交通项目供货或成功营运过的知名品牌,是能满足昆明轨道交通需求的该类设备技术要求及供货能力的产品,有较好的社会信誉。
2)业绩要求:自2006年以来风机类、风阀类设备生产商具有三个或以上国内城市轨道交通项目供货业绩(需含有隧道风机、排热风机、射流风机等核心设备;需含有电动组合风阀、电动调节阀、电动防火阀等核心设备)。(须提交相关合同协议书,业绩时间以合同上显示的签订时间为准;若与总承包商签订合同的,需提供有效的用于轨道交通项目的证明材料)
风机
风机按照其使用功能分成以下几种类型:区间隧道风机(TVF)、车站隧道排风机(TEF)、车站大系统风机、射流风机、车站小系统风机(送风机、排风机、排烟风机)。本标段的同一类设备不能出现两家设备供货商。各类风机均应由同一厂家生产。
相关规范
本技术规格书并未充分引述有关标准和规范的条文,提出的是最低限度的技术要求,承包商应提供符合本需求书和工业标准的优质产品。如投标人对招标设备及其附件的设计以及用于它的制作材料另行推荐时,应在投标文件中注明,并解释论述。
投标人应提供投标设备所采用的设计,制造、试验、验收、安全等相关标准作为投标附件。
《通风机基本型式尺寸参数及性能曲线》(GB/T3235-2008)
《工业通风机 尺寸》(GB/T17774-1999)
《消防排烟风机耐高温试验方法》(GA/T211-2009)
《工业通风机用标准化风道进行性能试验》(GB1236-2000)
《风机和罗茨鼓风机噪声测量方法》(GB/T2888-2008)
《工业通风机现场性能试验》(GB10178-2006)
《一般用途轴流通风机技术条件》 (JB/T10562—2006)
《隧道轴流式通风机》(JB4363-86)
《高温离心通风机技术条件》(JB/T 8822-1998)
《通风机 焊接质量检验技术条件JB/T 10213-2000)
《通风机转子平衡JB/T 9101-1999)
《工业通风机叶轮超速试验JB/T 6445-2005
《通风机包装通用技术条件》(JB/T6444-92)
《工业通风机 噪声限值》(JB/T8690-1998)
《通风机能效限定值及节能评价值GB19761-2009)
《隧道用射流风机技术条件》(JB/T10489-2004)
《公共建筑节能设计规范》(GB50189-2005)
《通风机振动检测及其限值》(JB/T8689-1998)
工作条件
环境温度:0~+45℃;
相对湿度:日平均值不大于95%;月平均值不大于90%;有凝露情况发生;
海拔高度:≤2000m;地震设防烈度:8度;
供电电源:三相交流380V/50Hz,单相交流220V/50Hz,允许电压波动±10%、频率波动±5%。
运行条件
区间两端车站TVF风机视情况并联或单机高速运作,风机应耐周期性列车活塞风冲击,冲击负荷为±1000Pa,冲击间隔为2分钟。
车站隧道排风机正常连续运行时有单台运行和两台并联运行两种工况。在事故情况下还需要备用区间隧道风机。
在正常工况运行时,能满足环境温度≤45℃,相对湿度≤95%条件下每天24小时连续变频或工频运行;在火灾工况时能满足在250℃条件下连续有效工作1h。
技术性能要求
风机在额定转速工作条件下进行试验时,其试验结果应满足下列要求:
(1) 在规定的风机额定全压条件下,所对应的流量不低于规定值的95%;
(2) 在规定的风机额定流量条件下,所对应的风机全压不低于规定值的95%;
(3) 在规定的风机额定工况点处,所对应的效率不低于规定值的97%;
(4) 在规定的风机额定工况点处,所对应的噪声值符合符合通风机噪声限值(JB/T8690-1998)。风机的空气动力性能参数和噪声指标应具有国际权威机构(如AMCA)的认证,投标人须提供风机空气动力试验、噪声试验报告。
为防止风机失速喘振,TVF风机、TEF风机和车站大系统送风机应设有防喘振装置。防喘振装置应保证风机在风量低至30%的额定风量状态、频率不变的条件下连续运行时均不会发生喘振。对该措施应有详细的图文说明。
双向可逆轴流风机正转工况下的风量、全压和轴功率与逆转工况下基本一致,绝对差值均不超过3%;风机在标准状态下设计工况点处正、逆转效率不低于75%。双向可逆射流风机正转工况下的风量、推力效率与逆转工况下基本一致,正、逆转推力效率均不低于34N/kW。
TVF风机应能在不大于4Ie启动电流情况下14秒内启动到额定转速, TEF风机和射流风机应能在不大于7Ie启动电流情况下14秒内启动到额定转速,车站大小系统风机的设计制造应能满足在10s内从启动到达额定转速。TVF风机、部分双向可逆的TEF风机以及部分双向可逆射流风机均要求在
罗茨风机轴温不能超过多少:罗茨风机故障国家有什么标z要求吗?
问:罗茨风机故障国家有什么标准要求吗?
小东答:对于罗茨风机的质量,国家有一定的相关技
术标准,要求罗茨风机整体使用寿命不得低于10年,罗茨风机的一次大修前应当安全运行的时间不得少于1500h。罗茨风机的使用寿命不仅和罗茨风机的研
发制造有关系,同时还于我们是否正常操作有一定的关系。另一方面,由于国内罗茨风机厂家繁多,鱼龙混杂,公司的规模及制造条件不同,产品质量上也存在较多
的差异,所以,罗茨风机采购一定要选择好品牌,选择好厂家。有任何采购问题可以联系:
点击这里了解 锦工罗茨鼓风机销售案例
更多相关问题:
>>不了解罗茨风机型号及参数吗?
>>锦工罗茨风机选型报价须知
>>罗茨风机异常振动的原因及解决方法
>>罗茨风机维修注意事项
>>三叶风机比传统风机的优势有哪些?
罗茨风机轴温不能超过多少:罗茨风机轴承温度过高怎么办?
原标题:罗茨风机轴承温度过高怎么办?
山东锦工有限公司是一家专业生产罗茨风机、罗茨鼓风机、回转式鼓风机等机械设备公司,位于有“铁匠之乡”之称的山东省章丘市相公镇,近年来,锦工致力于新产品的研发,新产品双油箱罗茨鼓风机、水冷罗茨鼓风机、油驱罗茨鼓风机、低噪音罗茨鼓风机,赢得了市场好评和认可。产品和服务远销全国各地及东南亚,深受客户好评。
罗茨风机是一种容积式压缩风机,其核心部件为包括主、从动轴,叶轮和齿轮的转子系统。因其具有结构简单、风机内腔不需要润滑油、运转平稳等优点已被广泛应用于石化、电力、冶炼、食品和污水处理等诸多领域。罗茨风机是电厂湿法脱硫工艺的关键设备之一,火电厂锅炉系统采用石灰石-石膏湿法脱硫方式时,大多采用罗茨风机为吸收塔鼓入足量空气,用以氧化吸收塔浆液内亚硫酸钙,促使其生成易于后处理的二水硫酸钙。罗茨风机运行的稳定性直接影响脱硫系统的正常运行以及环保达标排放。大唐科技产业集团有限公司信阳项目部#4脱硫系统采用锦工鼓风机厂生产的三叶式罗茨风机,型号为ASF300,额定电流为49.4A,轴承在线监测跳闸设定温度为98℃,实际运行中罗茨风机电流为43A,高于其长期正常运行值(30~32A)。 冬季时室温较低,罗茨风机运行状况良好(室温5℃时,罗茨风机前轴承在80℃左右),而到了夏季,当室温达到30℃以上时,罗茨风机前轴承随着室温上升超过设定跳闸温度。为避免跳闸,机组人员在机壳上加装喷淋水降温作为应急处理措施,但运行中卫生状况较差,没有从根本上解决问题。
1 解体检查
为了从根本上解决罗茨风机电流高轴承高温问题,我们对其进行了解体检查,解体检查前,我们从风机本身查找原因,推测可能有以下四种可能:(1)风机内部间隙发生变化,叶轮可能与墙板有轻微的摩擦,导致风机出力大、电流高,摩擦生成的热量传递至轴承处,导致轴承发热;(2)轴承自身出现了问题;(3)轴承与轴以及轴承室的配合出现了较大的间隙配合导致发热严重;(4)轴承室中润滑油质量较差,无法在轴承高速运行中形成油膜,轴承滚子出现轻微干摩擦导致发热严重。
解体后与推测对比如下:(1)风机内部间隙相对于上次检修后发生了变化,主动叶轮和前墙板间隙为0.30mm,小于0.40~0.60mm的装配要求,前墙板上存在轻微摩擦痕迹,存在导致轴承发热的可能;(2)解体后的轴承质量较好,未发现滚子和滚道磨损现象,保持架完好无磨损,排除轴承自身问题原因;(3)轴与轴承内圈配合部位存在严重磨损现象,轴与轴承内圈已成为间隙较大的间隙配合,存在发热的可能性;(4)轴承室中的油位较高,将油脂放出检查时发现油脂颜色较黑,判断为轴承长期温度较高,油脂在高温下易变质,变质后的油脂润滑性能下降,能进一步引起轴承发热,形成恶性循环。对风机叶轮检查后发现叶轮状态良好,未有磨损的痕迹,考虑到未有动平衡机,因条件受限,未对其进行动平衡试验即回装;对风机齿轮检查后发现齿轮原材质为20CrMnTi合金钢,材质较好,在使用中齿轮未发生磨损以及断齿现象,未对齿轮进行调整;轴承室油箱内每个轴承处均有一个甩油盘,固定在叶轮末端,随着轴一起旋转将油甩至轴承上,让轴承充分润滑,有两个甩油盘发生损坏,采用3mm厚钢板按照原来甩油盘尺寸重新制作两个甩油盘;检查风机轴承锁紧螺母止退锁片,发现已经多次使用,锁片已经失效,无法起到防止锁紧螺母松脱的功效,为防止运行中轴承锁紧螺母松脱,更换全部失效止退缩片;检查轴承室油箱壳体冷却水管路内较多水锈,对其震打后注入稀草酸溶液,待其充分反应后,将草酸倒掉,重新注入清水,清洗干净,保证冷却水环路的畅通。
2 初步处理
2.1 处理方案
对轴磨损处进行喷涂处理,喷涂后轴承内圈与轴为0.02mm紧力的紧配合,轴承虽然无损坏,但从长期运行方面考虑,仍然更换了FAG厂家C0间隙22224轴承两套,NU324轴承两套,轴承室内部油脂进行了重新更换,轴承箱骨架油封在经受长期高温后,存在老化现象,全部更换为氟橡胶材质,保证运行中不发生润滑油渗漏,罗茨风机内部间隙进行了重新调整,测量部位如图1,a1是从动轮叶轮与前墙板间隙,a2是主动轮叶轮与前墙板间隙,b1是从动轮叶轮与后墙板间隙,b2是主动轮叶轮与后墙板间隙,c1是主动轮叶轮与壳体间隙,c2是从动轮叶轮与壳体间隙,d1是主动轮为动力轮时叶轮之间间隙,d2是从动轮为动力轮时叶轮之间间隙,调整后参数见表1,符合罗茨风机出厂使用说明书要求标准。
d1:主动轮为动力轮时的测量值;d2:从动轮为动力轮时的测量值。罗茨风机装配完毕后,我们对风机进行中心找正,考虑到风机运行中叶轮及轴温度较高,风机热膨胀相对于电机要大,风机较之于电机要略低,同时为上张口,兼顾到电机的转速为980r/min,找正结果需要将径向与轴向误差控制在0.10mm内,本次中心找正百分表架装在罗茨风机上,最终找正结果:风机较之于电机径向偏差为0.05mm,风机低于电机,轴向误差为0.07mm,为上张口,符合找正要求。
2.2 试运结果
对风机进行送电试运行,在运行中风机的电流和前轴承温度曲线如图2。室温为20℃情况下,风机前轴承温度上升较快,电流仍然较大,未等前轴承温度上升至跳闸温度98℃时,及时安排风机进行停运。风机在本次检修后与检修前相差不大,检修中所做调整未起到明显效果。
3 再次处理
3.1 制定检修方案
由于在初步检修中未查找到风机运行中存在问题的根本原因,计划从如下两方面考虑:(1)风机前轴承为22224轴承两套,本次安装轴承游隙为C0系列,考虑到前轴承发热严重,将两套前轴承更换为游隙为C3系列的FAG轴承;(2)风机内部间隙正常情况下,风机前轴承温度以及电流依然高,对风机进出口管线进行排查,罗茨风机出入口管线有可能堵塞或者出口门存在不能全开的现象,若出口管线堵塞将导致风机出力压力增大,出口温度高,进而导致电流高,轴承温度高。 3.2 处理过程
罗茨风机出口母管后分为四根支管进入脱硫吸收塔内,因出口风温度较高,在风机出口每根支管上加装氧化风减湿水,在对每根支管进行拆开检查时,发现分叉处堵塞较多垢状物,其中一根支管已经接近于完全堵死,将管道内堵塞物清理干净,同时将垢状物进行化验,其中亚硫酸钙成分为0.7%,二水硫酸钙成分为8.38%,其余成分为碳酸钙与碳酸镁,排除了脱硫吸收塔内硫酸钙浆液倒吸至出口风管道内的可能,此处所结垢状物大多为加湿水受热后析出的水垢。脱硫系统用水有两路来源:一路是厂内循环工艺水;一路是从水源地来的单向工业水。工艺水在不断循环过程中,水中离子浓度偏高,水中碳酸氢根离子在受到氧化风机出口管道高于70℃的风温作用下,加速转化成碳酸根离子,结垢板结,堵塞管道。本次检修对氧化风机出口管线加湿水进行改造,将原取自工艺水的加湿水改为从工业水取水,提高水质,同时也对减温加湿水雾化喷嘴进行更换,从空心锥型喷嘴更换为螺旋锥型,将喷出水雾更好地雾化,减小雾化后雾滴的直径,增大了雾滴与热空气反应面积,能够更好地起到降温作用的同时也能减少水垢的生成。将风机前轴承更换为游隙为C3系列的22224轴承两套,加大游隙轴承,滚子与滚道间隙相对较大,在运行中受热膨胀后,减小轴承滚子和滚道的发热量。风机内部间隙又重新进行了调整,调整后的数据与上次调整后的数据相同(图1及表1),回装完毕后,进行找正,找正后的数据为风机径向低于电机0.05mm,轴向为上张口,误差为0.06mm,符合找正要求。
3.3 试运行结果
送电后,在室温为25℃情况下,再次试运行,运行中数据曲线如图3。
第二次处理后,在室温为25℃情况下,风机稳定运行中前轴承温度不高于72℃,较之于原来下降大于20℃;电流也由原来的43A左右下降至31A,下降12A左右,既保证了机组的稳定运行,同时也相对于检修之前更节能经济。罗茨风机作为容积式风机,罗茨风机的流量几乎不随压力而变化,应尽量避免风机出口管线堵塞以及出口阀门不能全开等工作状态,吸收塔液位每提高1m,氧化风机出口压力增加10kPa左右,出口风温升高10℃左右,至此已查找到本次罗茨风机前轴承温度高电流高原因:风机出口管线堵塞导致出口压力增加,风机出力增大,风机出力增大后电流随之上升,同时出口管线温度升高后高温气体将热量传至叶轮部位,叶轮将热量通过传动轴传至前轴承处;在对出口管线进行疏通后,一切数据均恢复正常。
4 结语
罗茨风机在运行一个周期后停机检查时,对风机内部进行检查是设备管理人员必不可少的一项工作,但对于风机进出口管线系统的检查,大多处于疏于管理的状态,容易导致管线内部结垢而未得到及时清理。通过提高出口风温减温水水质以及雾化效果,可以在一定程度上减少水垢生成;定期对出口管线进行检查,保证出口管线的畅通,才能保证风机正常运行。
:
罗茨风机轴温不能超过多少:高温罗茨鼓风机设计指标与各项参数
1 高温罗茨鼓风机主要设计要求
1.1 主要设计技术参数
主要设计技术参数见表1。
表 1 主要设计技术参数表
设计条件技术要求输送气体流量 / ( Nm3 /h )2 800气体常压露点 / kPa90 ℃ , 泄漏后腐蚀进口气体压力 / kPa-6.6出口气体压力 / kPa25进口气体温度 / ℃200进口气体相对分子量28.96运行条件连续运行气体组份HCl 、 H2O 、 SiO2 、空气
1.2 满足设计条件的高温风机的主要技术参数
满足设计条件的高温风机的主要技术参数见表2。
表 2 满足设计条件需研制的高温风机的主要技术参数表
型号ARE-250NE配套电机YBP280M-4-90 kW , 380V进气温度/ ℃200排气温度/℃260流量/(Nm3/h )2 800压力/kPa31.6传动方式直联轴功率/kW60
2 高温罗茨鼓风机设计技术要点
为了详细论述高温风机的技术要点,附主机结构示意图1如下。
1. 机壳 ; 2. 转子部; 3. 侧板; 4. 隔板; 5. 墙板; 6. 机械密封部; 7. 轴承; 8. 轴承座; 9. 副油箱; 10. 骨架油封; 11. 骨架油封; 12. 油箱密封垫; 13.O 形圈; 14. 侧板密封垫; 15. 墙板密封垫; 16. 轴承; 17 . 齿轮部 ; 18. 齿轮箱 .
图 1 高温罗茨鼓风机结构示意图
2.1 隔热结构的设计和隔热材料的选取
为降低高温气体对鼓风机润滑传动的影响,需在结构设计上考虑隔热措施。在风机两端的隔板上增加侧板,并在侧板与隔板之间增加隔热层――导热系数较低的隔热垫片,有效地降低机腔向两端的热传递。同时,在墙板与隔板之间也采用隔热垫片,降低隔板向墙板的热传递。这种隔热结构和隔热材料的选取,有利于减少气体热量向机械传动部位的热传导。
2.2 高温气体的密封
高温气体的密封采用双端面机械密封,不但密封性好,符合介质对密封性能的要求,而且循环流动的机封封液可以带走部分通过隔板的导热和自身产生的热量,使风机轴承、齿轮等需要低温运行的传动部位处于良好的工作状态。对于密封材料除应考虑介质适宜性,还要考虑高温的适应性。该机封采用了耐腐蚀、耐高温的金属材料和全氟醚材料O形圈。
2.3 辅助降温措施
理论上,即使再好的隔热材料也达不到绝热效果,热传递是必然存在的,在高温的影响下,部分热量会通过气腔与转子源源不断地向机封、墙板、轴承、油箱及齿轮传递。为了保证风机可靠运转,鼓风机两侧的墙板由常规的封闭式结构改为开放式结构,依靠空气对流进一步降低墙板温度和轴温。主、副油箱采用加强型水冷夹套结构,充分换热,以降低润滑油的温度。
2.4 高温材料及耐高温零部件的选择
高温气体过流主要部件的材料采用高性能球墨铸铁,O形密封圈采用全氟醚材料,零部件的表面涂装采用耐高温涂料。其它零部件如油封、轴承及润滑油等的选择均考虑了温度适应性。
2.5 零部件配合与叶轮各部间隙
鼓风机零部件的配合尺寸应考虑温度的影响。风机的机壳间隙、叶轮间隙、墙板间隙及齿轮游隙等在罗茨鼓风机的设计制造中为重要设计点,罗茨鼓风机高温用途时与常温用途比较,零部件的温度场区别较大,对各部间隙设计的影响也较大。
3 高温罗茨鼓风机相关的设计计算
根据高温罗茨的结构特点,需对高温鼓风机关键零件进行温度梯度计算、强度校核及对间隙进行计算,才能确保罗茨鼓风机在高温用途时使用安全可靠。
3.1 温度梯度的计算
根据热平衡原理,简化热传递模型。高温风机在稳定状态下,按一维稳态导热,温度从机腔―侧板垫―隔板―隔板垫―墙板―润滑油,形成不同的温度梯度,见图2。
1.侧板垫;2.隔板;3.隔板垫;4.墙板.
图2 传热示意图
根据热传递理论,机腔―侧板垫的传热为强迫对流换热,墙板―润滑油的传热为自然对流换热,中间各壁面间均为固体热传导。由此可列出一组换热方程如下:
Q=α1×A1×(Tf1–TW1)=K1×(Tf1–TW1) (1)
Q=λ1/δ1×A2×(TW1 –TW2)=K2×(TW1–TW2) (2)
Q=λ2/δ2×A3×(TW2 –TW3)=K3×(TW2–TW3) (3)
Q=λ3/δ3×A4×( TW3 –TW4 )=K4×( TW3–TW4) (4)
Q=λ4/δ4×A5×(TW4 –TW5)=K5×(T W4–TW5) (5)
Q=α2×A6×(TW5–Tf2)=K6×(TW5–Tf2) (6)
式中:A1~A6和δ1~δ6可以根据风机的结构尺寸进行计算得到,λ1~λ4是物性,可以依次查出。又已知机腔内的温度Tf1=(200+260)/2=230℃,润滑油的温度Tf2按照90℃设计,并假设与润滑油接触的壁面温度TW5为某一数据TW5*。根据强迫对流换热,计算出α1,并根据自然对流换热,计算出α2,可依次计算出各部位的换热系数K1~K6温度,解方程,求出换热量Q=(T1–T2)/(1/K1+1/K2+1/K3+1/K4+1/K5+1/K6),从而可依次计算出各壁面温度TW1~TW5。经过循环复核,直至TW5=TW5*。
3.2 高温罗茨风机的转子强度、轴承寿命和间隙计算
根据材料力学基础,对风机转子进行弯矩和扭矩强度校核,并对轴承的疲劳寿命进行核算,以保证风机整体的使用寿命。
罗茨鼓风机的两个转子在运转中必须留有一个微小的间隙,以保证正常运行。由于高温风机的温度因素势必造成机腔内各部位零部件超常膨胀,各部位间隙的设计计算成了风机正常运行的关键。根据各零部件的温度,结合理论与试验数据,比较准确地计算转子间隙、墙板间隙和机壳间隙,既要保证各部位膨胀后不擦碰,又要保证流量这一基本性能参数的要求。
4 高温风机的模拟试验
4.1 高温试验装置
罗茨鼓风机高温试验装置包括高温罗茨鼓风机、配套电机、变频器、流量性能测试装置、电加热器、高温回流管、电气控制柜、测试管路阀门以及测试用仪器仪表等。
试验时鼓风机进口高温气体由两部分混合组成,一部分气体为环境空气通过电加热器加热后进入,另一部分为出口气体通过阀门回流至电加热器后与第一部分气体混合后进入鼓风机,鼓风机进口设有温度传感器检测进口气体温度,通过电控柜自动调节控制进口气体温度。通过回流阀门开度控制回流气量调节鼓风机进口压力。
4.2 高温机械性能试验
利用小型电加热器辅以部分回流组合,同时采用变频调节[15-16]风机流量、压力,进气温度模拟工况温度200℃,通过鼓风机逐步升温的方式进行。试验中,检查风机的振动、温度、声音及密封等机械运行情况、各部位温度的变化情况,检查温度变化对风机间隙的影响等。
4.3 高温技术性能试验
检测各测试压力下的零流量转速,即鼓风机打滑转速,以消除采用常规鼓风机流量测量装置时高温气体对测试装置的影响,而能够比较准确地计算出风机在高温工况条件下的鼓风机流量[2,14] 。检测各测试压力下鼓风机的轴功率等。
4.4 试验验证
主要技术指标试验结果见表3。
表3 主要技术指标试验结果表
项目实测值设计值标准偏差实际偏差结论流量/( m3/h)2 6942 800≤ + 5%-3.8%合格压力/KPa31.631.6//合格轴功率/kW61.460Q +5%+2.3%合格振动值/(mm/s)≤ 6.4≤ 11.2//合格
主要部件温度检测结果见表4。
表4 主要部件温度检测结果表
项目T W1T W2T W3T W4T W5计算值192.5162.实测值差异比较
从技术性能参数表(表3)中可见,各实测数据均在标准偏差范围内,符合设计要求。
从温度梯度表(表4)中分析,也达到了设计要求。各实测数据均比设计数据略小,这是因为设计计算时,将隔板和墙板理想化为一维传热,向其它方向(如大气)的传热视为绝热。
综上,从罗茨鼓风机高温试验情况来看,风机运行稳定,流量和压力等技术性能参数满足工况要求,主机温度符合介质的工艺要求,主要部件温度梯度与设计相符,达到了比较理想的隔热设计效果。
罗茨鼓风机及其使用 JAS罗茨鼓风机 罗茨鼓风机重量 艾珍罗茨鼓风机
山东锦工有限公司
地址:山东省章丘市经济开发区
电话:0531-83825699
传真:0531-83211205
24小时销售服务电话:15066131928
